26 Eylül 2012 Çarşamba

Tam Kare İfadeler 2008 KPSS Soru ve Çözümü

SORU:

a ve b pozitif tam sayılar olmak üzere,
a3 - b3 = 19
olduğuna göre, a2 - b2 kaçtır?(2008 KPSS)
A) 5   B) 9   C) 10   D) 13   E) 17

ÇÖZÜM:

a3 - b2 = 19
(a - b).(a2 + ab + b2) = 19
Bu denklemin sağ tarafı 19'a eşit. 19 bir asal sayıdır ve bu asal sayının çarpanları 1 ile 19 sayılarıdır. Buna göre denklermin sol tarafındaki çarpanları 1 ve 19 sayılarına eşitlememiz gerekir.
(a - b) = 1 ve (a2 + ab + b2) = 19 olur.
Şimdi ilk ifadede eşitliğin her iki tarafının da karesini alalım
(a - b)2 = 12
a2 - 2ab + b2 = 1
İkinci denklemde kareli değişkenler eşitliğin sağ tarafına atılır ve ab sayısı için,
ab = 19 - a2 - b2 eşitlği elde edilir.
Bu eşitlik ilk denklem için elde ettiğimiz kareli ifadede yerine koyulursa.
a2 - 2(19 - a2 - b2) + b2 = 1 denklemi elde edilir.
Denklem üzerinde gerekli işlemler yapılırsa,
3(a2 + b2) = 39
a2 + b2 = 13 şeklinde soruda istenen eşitlik elde edilir.
Doğru Cevap D seçeneğidir.



Turgut Arslan

Hiç yorum yok: